
Cascading Spatio-temporal pattern discovery: A summary of results

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 10-001

Cascading Spatio-temporal pattern discovery: A summary of results

Pradeep Mohan, Shashi Shekhar, James A. Shine, and James P.

Rogers

January 14, 2010

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
14 JAN 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Cascading Spatio-temporal pattern discovery: A summary of results

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Minnesota,Department of Computer Science and
Engineering,200 Union Street SE,Minneapolis,MN,55455-0159

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Given a collection of Boolean spatio-temporal(ST) event types, the cascading spatio-temporal pattern
(CSTP) dis- covery process finds partially ordered subsets of event-types whose instances are located
together and occur in stages. For example, analysis of crime datasets may reveal frequent oc- currence of
misdemeanors and drunk driving after bar clos- ings on weekends and after large gatherings such as
football games. Discovering CSTPs from ST datasets is important for application domains such as public
safety (e.g. crime at- tractors and generators) and natural disaster planning(e.g. hurricanes). However,
CSTP discovery is challenging for sev- eral reasons, including both the lack of computationally ef- ficient,
statistically meaningful metrics to quantify interest- ingness, and the large cardinality of candidate pattern
sets that are exponential in the number of event types. Exist- ing literature for ST data mining focuses on
mining totally ordered sequences or unordered subsets. In contrast, this pa- per models CSTPs as partially
ordered subsets of Boolean ST event types. We propose a new CSTP interest measure (the Cascade
Participation Index) that is computationally cheap(O(n2) vs. exponential, where n is the dataset size) as
well as statistically meaningful. We propose a novel al- gorithm exploiting the ST nature of datasets and
evaluate filtering strategies to quickly prune uninteresting candidates. We present a case study to find
CSTPs from real crime re- ports and provide a statistical explanation. Experimental results indicate that
the proposed multiresolution spatio- temporal(MST) filtering strategy leads to significant savings in
computational costs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Cascading spatio-temporal pattern discovery: A summary of results∗

Pradeep Mohan, Shashi Shekhar† James A.Shine, James P.Rogers ‡

Abstract

Given a collection of Boolean spatio-temporal(ST) event

types, the cascading spatio-temporal pattern (CSTP) dis-

covery process finds partially ordered subsets of event-types

whose instances are located together and occur in stages. For

example, analysis of crime datasets may reveal frequent oc-

currence of misdemeanors and drunk driving after bar clos-

ings on weekends and after large gatherings such as football

games. Discovering CSTPs from ST datasets is important

for application domains such as public safety (e.g. crime at-

tractors and generators) and natural disaster planning(e.g.

hurricanes). However, CSTP discovery is challenging for sev-

eral reasons, including both the lack of computationally ef-

ficient, statistically meaningful metrics to quantify interest-

ingness, and the large cardinality of candidate pattern sets

that are exponential in the number of event types. Exist-

ing literature for ST data mining focuses on mining totally

ordered sequences or unordered subsets. In contrast, this pa-

per models CSTPs as partially ordered subsets of Boolean

ST event types. We propose a new CSTP interest measure

(the Cascade Participation Index) that is computationally

cheap(O(n2) vs. exponential, where n is the dataset size)

as well as statistically meaningful. We propose a novel al-

gorithm exploiting the ST nature of datasets and evaluate

filtering strategies to quickly prune uninteresting candidates.

We present a case study to find CSTPs from real crime re-

ports and provide a statistical explanation. Experimental

results indicate that the proposed multiresolution spatio-

temporal(MST) filtering strategy leads to significant savings

in computational costs.

1 Introduction

Given a set of boolean spatio-temporal(ST) event
types and their instances, cascading spatio-temporal
patterns (CSTPs) are partially ordered subsets of event
types whose instances are located together and occur in
successive stages. Figure 1 shows a CSTP observed after
a hurricane. The first stage of the CSTP is the hurricane
event and the successive stages are represented by events

∗Supported by grants from US Army and NSF
†Department of Computer Science, University of Minnesota,

{mohan,shekhar}@cs.umn.edu
‡US Army ERDC, Geospatial Research

and Engineering Division, Alexandria, VA
{james.a.shine,james.p.rogers.II}@usace.army.mil

such as heavy rainfall, localized flooding and wind dam-
age. Figure 2 shows an example from a crime dataset of
a CSTP involving three event types: bar-closing (rep-
resented by circles), assault (represented by triangles)
and drunk driving (represented by squares). Bars in
large cities are often considered as generators of crimes
that occur after bar closing time[25]. In crime analysis,
CSTPs may represent interesting hypotheses relating
several crime types, which may help law-enforcement
agencies and policy makers to determine appropriate
action for crime mitigation. CSTPs are important in

Evacuation of low areas

Strong winds
Damage

wind

Power Outage

Flooding

Localized
Heavy Rainfall

Hurricane

Figure 1: CSTP occurring after a Hurricane

a number of application domains, including climate
change science (e.g. understanding the effects of climate
change on food supply[1]), public health (e.g. tracking
the emergence, spread and re-emergence of multiple in-
fectious diseases[18]) and public safety (e.g. studying
the interaction between several crime event types).

CSTP discovery is a challenging problem for two
key reasons: (1) quantifying the measure of interest-
ingness of ST patterns has complex constraints that
include computational tractability (e.g. measures are
computable in polynomial time) and statistical essence
(e.g. statistical interpretation is based on ST statis-
tics) and (2) the large cardinality of candidate pat-
terns, which is exponential in the number of event types,
makes the problem combinatorially complex[21].
Related Work : Related literature from ST data min-
ing has primarily focussed on ST sequences[13] and un-
ordered co-occurrences[27, 6]. A ST sequence repre-
sents a chain of event types in a uniform ST frame-
work under the assumptions of total ordering because
of time[13]. Co-occurrences represent un-ordered col-
lection of event types that occur together in a uniform
ST framework[27, 6]. These methods do not account
for the possible existence of event instances with ei-

(a) (b)

A.4

Time = T2

(c)

A.1A.1

Drunk Driving (C)

Bar Closing(B)

Assault (A)

(e)

Legend

B.1B.1

C.4

C.3

C.4

C.3

C.2 C.2

A.2

A.3
A.2

A.3
C.1C.1

A.4

(T1, T2, T3)

Cumulative

B.2

(d)

Time = T3Time = T1

B.2

Example CSTP

A

B

C

Figure 2: Illustrative Spatio-temporal Crime Dataset

ther disjoint or similar occurrence times. This limits
the topological richness of ST patterns to account for
notions such as events and processes that are defined in
time geography and temporal logic[5, 23, 28]. Hence,
existing ST data mining methods are not designed to
discover ST partial ordered patterns such as CSTPs. In
the broader data mining literature, possible candidates
for quantifying the interestingness of CSTPs have been
proposed[15, 14, 19]. Section 5 discusses their applica-
bility in a ST data mining context.
Our Contributions: This paper models CSTPs as
partial ordered ST patterns.A novel CSTP interest mea-
sure, the Cascade Participation Index(CPI) which can
be evaluated in O(n2) (n being the number of instances
in the database) computations is proposed. The CPI
also exhibits the anti-monotone property to facilitate
apriori style pruning [3]. It can be shown that the CPI
is statistically meaningful by proving that it is an upper
bound to the space-time K Function [20, 9]. The paper
introduces a novel CSTP miner and proves that it is
correct and complete. In addition to apriori style prun-
ing and upper bound(UB) filtering, the CSTP miner
uses the ST nature of the data to further reduce com-
putational cost. In particular, it introduces a multi-
resolution spatio-temporal (MST) filter.

This paper makes the following contributions: a)
novel CSTP interest measure to quantify statistically
meaningful CSTPs; b) an apriori based CSTP miner
that uses novel filtering strategies to discover CSTPs
from ST datasets; c) an analytical evaluation proving
the correctness and completeness of the CSTP Miner;
(d) a case study and statistical explanations to find
CSTPs from real datasets; and (e) an experimental eval-
uation of the proposed filtering strategies using different
design decisions on real crime datasets.
Scope: This paper focuses on computational aspects
of discovering CSTPs. It does not address issues re-
lated to choice of directed neighborhood relationships
and interest measure and ST neighborhood size thresh-
olds. These are application domain dependent and will

be addressed in future in colloboration with domain sci-
entists.
Outline: The rest of the paper is organized as follows:
Section 2 defines some basic concepts, including the
boolean ST partial order neighbor relation and CSTP
interest measures, and formalizes the CSTP discovery
problem. Section 3 describes the CSTP Miner, the two
filtering strategies (the UB filter and the MST filter) and
provides an analytical evaluation of the CSTP Miner.
Section 4 presents results of a case study and compu-
tational evaluations with real crime datasets. Section 5
presents a relevant discussion and Section 6 concludes
the paper.

2 Problem Formulation

The special properties of ST data (e.g. dependence,
overlapping neighborhoods, low dimensional embedding
etc.) motivate different data models and/or representa-
tions. This section describes some basic concepts (e.g.
ST data modeling and interestingness measures) and
formulates the CSTP mining problem.

2.1 Modeling ST data: ST data is often modeled
using events and processes, both of which generally rep-
resent change of some kind. Processes refer to ongo-
ing phenomena that represent activities of one or more
types without a specific endpoint [23, 5, 28]. Events re-
fer to individual occurrences of a process with a specific
beginning and end. Event-types and event-instances
are distinguished. For example, a hurricane event-type
may occur at many different locations and times e.g.,
Katrina(New Orleans, 2005) and Rita(Houston, 2005).
Each event-instance is associated with a particular oc-
currence time and location. The ordering may be total
if event-instances have disjoint occurrence times. Oth-
erwise, ordering is partial.

Partial order over a set of event-instances may be
constrained further to define a directed neighbor re-
lation(R) by restricting distance in space, time or both
by using a threshold. For example, a misdemeanor

crime instance and a bar-closing instance may not be
considered directed neighbors if separated by six hours
and tens of miles.

A directed neighbor relationship over a set MI

of event-instances may be formally represented as a
directed acyclic graph, GI = (MI, EI), where EI
is a set of directed edges representing ordered pairs
in MI X MI. For example, the application of
directed neighbor relation(R) on the illustrative
dataset shown in Figure 2 produces the directed acyclic
graph shown in Figure 3 called the Directed ST neigh-
borhood graph. This graph is computed on-the-fly by
the CSTP miner.

Partial (or total) order may also be defined on

B.1A.1

Time

Space

C.1 A.3

C.2 C.3

B.2

C.4

A.4

A.2

Figure 3: Directed ST neighborhood graph

event-types, possibly to represent simple processes. For
example, Figure 1 shows a partial order among event
types of hurricane, heavy rainfall, strong winds, evac-
uation of local areas, localized flooding, wind damage
and power outage.

Cascading ST patterns (CSTP) in a broad sense
represent partially ordered sets of event-types.

2.2 Quantifying the interestingness of CSTPs:
Interestingness of CSTPs may be measured in different
ways (e.g. support, join-probability, conditional prob-
ability etc.). In data mining, interest measures are se-
lected using criteria such as computational scalability
to large datasets, ease of interpretation and utility in
context of application domains. In a ST data min-
ing context, the goal of interest measure selection is to
balance the conflicting requirements of computational
scalability and statistical interpretation. A key appli-
cation domain constraint that influences interest mea-
sure is the ability to predict the instances of a CSTP
given an instance of a participating event type. In order
to account for the unique characteristics of ST frame-
works, the measures for CSTP mining are a general-
ization of the measures defined in spatial co-location
pattern mining[22].

Definition 2.1.

A Cascade Participation Ratio, CPR(CSTP,M),
may be interpreted as an estimate of the conditional

probability of an instance of a pattern CSTP given an
instance of event type M, i.e. Pr(CSTP |M). Formally,
CPT(CSTP,M) can be written as

CPR(CSTP, M) =
#instances (Mj) participating in CSTP

#instances (Mj) in Dataset
,

where Mj is a participating event type in CSTP with
1 ≤ j ≤ # Event Types in the Dataset.

Definition 2.2.

A Cascade Participation Index , CPI(CSTP), of a
pattern is a measure of the likelihood of an instance of a
pattern CSTP in the ST neighborhood of an instance of
a participating event-type. By definition, CPI(CSTP)
is the minimum of CPR(CSTP,M), over all event-types
M in pattern CSTP. Since CPR(CSTP,M) may be in-
terpreted as an estimate of the conditional probabil-
ity of an instance of a pattern given an instance of M,
CPI(CSTP) may be viewed as a lower bound on the con-
ditional probability Pr(CSTP |M) for any participating
event-type M. This definition holds under the assump-
tion of ST stationarity. CPI can be formally written as,
CPI = min {CPR(CP, M)},

For example, the CPI of the CSTP shown in Figure 2
is CPI = min

{

1
2 , 2

4 , 2
4

}

= 1
2 .

Reliability: CPI, just like many other measures in
data mining, represents a trade-off between two con-
flicting goals: modeling pattern interestingness (or im-
portance), and computational scalability. CPI is com-
putationally less expensive to evaluate for each candi-
date than related interest measures such as the size of
maximum independent set of instances used in graph
mining[15]. It is also anti-monotonic to utilize apriori-
like pruning[3], which is not the case for interestingness
measures based on joint probability, such as those in
Bayesian Networks[19]. Interestingness depends on the
application. Graph mining and Bayesian Networks mea-
sure the frequency/probability of a pattern, while CPI
measures the conditional probability of a pattern(such
as a CSTP) given an instance of a participating event-
type. We feel that the CPI is a useful measure for appli-
cations predicting the near future occurrence of a pat-
tern in the vicinity of an observed instance of a partici-
pating event-type .
Use of partial ordering: CPI(CSTP) makes of use
of partial ordering in many ways. First, partial or-
der is used to define directed ST neighborhood graphs
to restrict the direction of influence (e.g. edges can-
not start from a later event and end up at an earlier
event). Second, partial order is used to define the or-
dering of event-types in cascading ST patterns and their
instances. Thus algorithms to compute CPI(CSTP) en-
sure that the pattern instances being counted do not
violate the partial order constraint. For example, a
join-based algorithm to compute CPI(CSTP) will use

the partial order constraint as the join predicate to enu-
merate relevant instances of the pattern CSTP. In con-
trast, a graph-based algorithm to compute CPI(CSTP)
may enumerate directed neighbor edges consistent with
the partial order before counting subgraphs represent-
ing pattern instances.
Based on the above definitions, the CSTP mining prob-
lem can be defined as follows:
Given :
a. A ST dataset consisting of a set of Boolean event-
types over a common ST framework.
b. A directed neighbor relation, R.
c. A threshold for the CPI
Find :
a. CSTPs with CPI ≥ the user specified threshold
Objective :
a. Minimize computation time.
Constraints :
a. Correct and complete sets of CSTPs are discovered.
b. CSTP interest measures find statistically meaningful
CSTPs.
Example: In public safety, a set of crime reports with
locations, time stamps and event types may represent
a ST dataset (as in Figure 2) and events such as bar-
closing, drunk driving etc. may represent boolean event
types. Each event type is considered Boolean because
we are primarily concerned with either the occurrence
or absence of a crime event type at a particular loca-
tion or time. The directed neighbor relation R can be
defined by using distance (e.g. 0.5 miles, 5 miles etc.)
or time thresholds (e.g. minutes, hours, days etc.). The
CSTP discovery problem does not require the number
of stages of a CSTP as an input.

3 Challenges and Solutions

In this section, we outline some key challenges of
mining CSTPs and explore possible solutions to these
challenges. We then describe the CSTP Miner and two
novel filtering strategies: the upper bound (UB) filter
and the multiresolution spatio-temporal (MST) filter).

3.1 Broad Challenges: Spatio-temporal datasets
consist of many different event-types. The cardinality
of candidate CSTPs is exponential in the number of
event-types[21]. Since unfiltered candidate generation
will generate an exponential number of potentially un-
interesting candidates, smarter filters that could prevent
the generation of such candidates need to be designed.
ST data mining often faces the conflicting requirements
of statistical correctness and computational scalability.
An ability to address this complex requirement is one of
the desired properties of interestingness measures. We
show that the CPI addresses this complex requirement

and thus serves as a useful interestingness measure for
CSTPs.
ST neighborhood enumeration is a another key chal-
lenge in the CSTP mining. It can be addressed by ei-
ther a neighborhood graph enumeration approach or a
ST join based approach. In ST frameworks, there exist
many overlapping neighborhoods. This forces candidate
enumeration strategies (e.g. graph based, join based) to
enumerate all combinations of ST relations between n

data instances, leading to an O(n2) join computation
cost. A key design strategy to reduce this cost is to
avoid computing joins that may never lead to prevalent
CSTPs. The CSTP miner uses the anti-monotonic[3]
upper bound property of the CPI and low-dimensional
embedding in the ST framework to enhance computa-
tional savings.

3.2 CSTP Miner is an algorithm to generate all
CSTPs with a CPI value greater than or equal to a user
specified threshold. The algorithm contains three key

Algorithm : CSTP Miner

Input:
(a)M Boolean ST event types and their instances.
(b)A user specified ST partial ordered neighbor relation
R.
(c)A single user specified interest measure threshold.
Output:
Set of CSTPs with interest measure ≥ threshold.
Variables:
a. k: Pattern size (number of edges in a CSTP).
b. Optimization flags to activate upper bound(UB) and
MST filters.
Method:
1. For size of patterns in (1,2...k) do
2. If(UB is TRUE)
3. Perform upper bound filtering.
4. Generate candidate CSTPs of size k using CSTPs
of size k-1
5. Perform cycle checking and eliminate cycles.
6. If(MST is TRUE)
7. Perform MST filtering.
8. Perform ST join and generate pattern instances.
9. Prune CSTPs based on their prevalence.
10. Generate prevalent CSTPs
11. End

steps: (a) candidate generation, (b) interest measure
computation and (c) pruning. Performance optimiza-
tion is performed before candidate generation and be-
fore interest measure computation.
Explanation of the detailed steps of the algo-
rithm

Legend

Size K = 2

Size K = 3

Size K = 1

Pruned by Upper bound filter Pruned by MST filter

C

{NULL}

B
A

B

BCACCBCABA

C

A

C
B

B

C

A

AB

A

Figure 4: Candidate CSTP space (Best viewed in color)

Steps 1-11 enumerate from size-1 to size-k pattern sets
and generate prevalent CSTPs. The enumeration ter-
minates when an empty set of size-k patterns is found.
Steps 2-3 are filtering steps to avoid uninteresting
candidate generation. Even though the anti-monotone
upper bound in CSTP mining is different from that in
graph mining[15], the intuition of avoiding uninteresting
candidates by using such a filter is inspired from graph
mining [15]. We describe and prove the existence of an
upper bound to CPI later in this section.
Step 4 is the actual candidate CSTP computation step
which generates size-k candidates from size k-1 frequent
patterns. This is similar to the step used in transaction
graph mining algorithms such as frequent subgraph dis-
covery [14]. However, the key issue with this step is the
generation of patterns with cycles. Cycles are problem-
atic because CSTP is a partially ordered subset of event
types represented as a directed acyclic graph. Hence,
cycles need to be filtered by performing a cycle check-
ing.
Step 5 filters out patterns that have cycles and gen-
erates the set of candidate CSTPs of size k. The cy-
cle filtering step is extra work performed by the CSTP
miner.
Steps 6-7 perform multiresolution spatio-temporal
(MST) filtering. The MST filter will be described in
detail later in this section.
Step 8 uses a ST join to compute the set of instances
corresponding to a CSTP. The instances of a size k
CSTP are computed by joining the set of instances from
its size k-1 sub-patterns. The CPI is computed for the
CSTP from the set of join instances.
Step 9 prunes the set of candidate CSTPs by making
use of the user specified threshold. Prevalent CSTPs of

size k are then generated.
The CSTP miner enumerates the space of candidate
patterns as shown in Figure 4. Figure 4 shows a subset
of the candidate CSTPs that are reported as prevalent
patterns by the CSTP miner using a CPI threshold of
0.5. The CSTPs that are crossed using colored(red or
blue) thick lines are patterns that could potentially be
pruned out early using one of the pruning strategies(e.g.
UB filter and MST filter). If no filtering strategies are
employed, the patterns crossed with thick lines would
get generated and the actual value of the CPI would be
computed, slowing down the computation.

3.3 Filtering strategies : The CSTP miner’s per-
formance is enhanced by using two filters: the up-
per bound (UB) filter and the multi-resolution spatio-
temporal (MST) filter.

3.3.1 Upper Bound Filter: The upper bound (UB)
filter is based on the existence of an upper bound for the
CPI. We first prove that there exists an upper bound
to the CPI. In some cases, the interest measure might
take very low values for candidate CSTPs. Hence,
we make use of this strategy to prevent uninteresting
candidate generation. These upper bound values reflect
the maximum possible value of the interest measure for
a candidate CSTP.

Definition 3.1.

The Upper bound of the CPI, upper(CPI), is the
ratio of the minimum and maximum value of the CPR
(see Definition 2.1) of event-types participating in a
CSTP. It can be formally written as: upper(CPI) =
min{CPR(CSTP,Mj)}
max{CPR(CSTP,Mk)} ,

where Mj,Mk is an event type ∈ CSTP , with 1 ≤ j, k ≤
Event Types in Dataset.
It is clear from the above definition that upper(CPI) is
an upper bound to the CPI because the CPI is the low-
est value upper(CPI) can take (when the denominator
is 1).

The UB filter is used before candidate generation.
When merging two size k-1 CSTPs to generate a candi-
date size-k CSTP, we compute the upper bound for the
candidates to be generated. If this upper bound is less
than the user specified threshold, then we do not pro-
ceed with candidate generation. For example, Figure 4
shows a few size k=1 patterns crossed with thick red
lines and that would be pruned by the UB filter even
before candidate generation. This filtering saves the
cost of candidate generation and the cost of computing
the ST join required for calculating the CPI.

3.3.2 Multi Resolution ST Filter: The MST
filter exploits the low dimensional embedding in a ST
framework. Figure 5 shows the functioning of the MST
filter. A uniform ST grid defined using the parameters
d and t is overlaid on the actual ST dataset. The
instances of each event type are assigned to specific
grids to obtain a coarse (or aggregated) dataset. This
procedure is similar to the pagination imposed by a
standard ST index structure. Based on this new coarse
dataset, a new coarse directed neighbor relation RC is
derived. Two grids are neighbors under RC if and only
if they contain at least one pair of instances lying on
each of the grids that are neighbors under R. During
MST filtering, the coarse dataset is substituted for the
original dataset. For every candidate CSTP, the MST
filter generates a set of CSTP instances on the coarse
dataset and computes a coarse CPI. The key idea is
that the coarse CPI is an upper bound to the actual
CPI for a CSTP. If the coarse CPI is less than the user
specified threshold, the pattern is pruned. The coarse
CPI is also computed by performing a ST join.

Figures 5b and 5c illustrate MST filtering for size
1 patterns. Figure 5c also shows that the MST filter
overestimates the value of the interest measure. For
example, the value of CPI for CSTP A → C on the
actual datset is 1

2 , but it is 1 on the coarse dataset.

Lemma 3.1. MST filtering never understimates
the value of the interest measures compared to
the original dataset.

Proof. MST filtering has two key ideas: (a) instance as-
signment to grids and (b) coarsening R to RC . From
the definition of RC , two grids are neighbors if they
contain at least one pair of instances from each grid

respectively that are neighbors under R. This means
that under RC , two instances could become neighbors
even if they were not neighbors under R. For example,
in Figure 5(b), instances A.4 and C.4 became neigbors
under RC whereas they were not neighbors under R.
This increases the number of instances of each event-
type participating in any coarse ST relation, eventually
increasing the interest measure value and overestimat-
ing it.

3.4 Analytical Evaluation: We show that the
CSTP miner is correct, complete and can find statis-
tically meaninful patterns. We prove that the CPI and
its upper bound are anti-monotonic. Anti-montonicity
is an essential property for computational efficiency of
the CSTP Miner. A detailed analytical evaluation with
algebraic cost models is presented in the appendix.

Theorem 3.1. CPI and its upper bound are anti-
monotonic.

Proof. The key insight behind the proof is that the
value of the CPI and its upper bound are non-increasing
with pattern size. We prove this by considering two
CSTPs, CSTP (k) and CSTP (k − 1), which represent
CSTPs of size k and k−1 respectively, and establishing
that CPI(CSTP (k)) ≤ CPI(CSTP (k−1)) under the
addition of an edge. The proof of anti-monotonicity
of the upper bound of the CPI is based on the same
intuition. The steps are described in the Appendix
(Lemma A.1,A.2).

Theorem 3.2. The CSTP Miner is Correct.

Proof. By correctness we mean that no spurious pat-
terns are generated.

Spurious pattern generation is avoided in the CSTP
miner by computing the CPI correctly and by removing
candidate CSTPs with cycles. Step 8 performs a simple
nested loop ST join and identifies all related instances.
Hence, this step computes the CPI correctly. Step 5 re-
moves patterns with cycles, thereby ensuring that only
valid directed acyclic graphs are generated as candidate
CSTPs. Only valid CSTPs that pass the user speci-
fied threshold are then accepted as prevalent patterns.
Thus, the CSTP Miner is correct.

Theorem 3.3. The CSTP Miner is Complete.

Proof. By completeness we mean that the CSTP miner
does not miss any valid patterns and that all preva-
lent patterns are reported. Step 4 computes all candi-
date CSTPs including the ones that have cycles. Theo-
rem 3.1 ensures that no valid patterns are pruned during

t

d

Threshold = 0.5

Interest Measure : Cascade Participation Index

CSTP Instances from actual dataset

A.3

0 1 32

0

1

2

3

Space

Time

CSTP Instances from coarse dataset

(a) Actual CPI

(b) Coarse ST Dataset

(3,0) (2,1)

(1,1) (0,2)
(1,1) (2,2)
(3,0) (2,1)
(3,0) (3,1)

(0,1) (0,2)
(1,2) (0,2)
(1,2) (2,2)
(3,1) (3,1)
(3,1) (2,1)

(c) CPI on Coarse dataset

1

(2,1) (2,1)
(2,1) (2,2)
(2,1) (3,1)

11
A.2

(1,1) (2,1)

(3,0) (3,1)

(1,1) (0,1)

3 2
13

1 1

3/4
B.2

A.4

C.4A.1

C.1 C.2

B.1
C.3

1

B A B C A C
B A B C

2

1
31

2 2
2 4

1

1 1
2

1
1

32
4

A C

Figure 5: Illustration of the Multi-resolution spatio-temporal filter

upper bound filtering. Lemma 3.1 guarantees that the
interest measure values of patterns are overestimated
correctly, and thus that a valid pattern would not get
pruned. From Theorem 3.2, one can understand that
the ST join phase computes the interest measure value
correctly and does not make any approximations. This
ensures that all patterns will have a correct value of
their interest measure and no valid pattern would get
pruned out because of an approximated value. The-
orem 3.2 also showed that step 5 of the CSTP miner
removes all cycles. Step 5 makes use of a depth first
search or a breadth first search and removes patterns
that are only cycles ensuring that valid CSTPs are not
removed. Hence, the CSTP miner is complete.

Lemma 3.2. The CPI is an upper bound to the
space-time K-Function
Proof: From Definition 2.2 and the definition of the
space-time K-Function[20], we have

CPI = min
{

instances(CSTP,A)
|A| ,

instances(CSTP,B)
|B|

}

KAB = 1
ST

· 1
λA·λB

∑

·i
∑

·jIht(d(Ai, Bj), td(Ai, Bj))

= # instances(CSTP)
|A|·|B|

⇒ # instances(CSTP, A) ≥ # instances(CSTP,A)
|B| ,

Similarly,

⇒ # instances(CSTP, B) ≥ # instances(CSTP,B)
|A|

(either of the values are greater than the average
number of instances of A around B and vice versa
participating in CSTP)
⇒ CPI = upperbound(space− time K −Function)

For example, Figure 6 shows different cases of ST
interaction between two event types A and B. In all
of the shown neighborhood arrangements, the CPI is
greater than or equal to the space-time K-Function.

4 Case Study and Performance Evaluation

In this section, we present a case study using real
crime datasets from Lincoln, Nebraska[8] and a com-
putational performance evaluation of the CSTP miner.

B

B

1

118/18=1

(b) (c) (d)(a)

A

AAA

CPI

ST K−Function

11

1/6

2/3

2/18 = 1/9

A

B

A

B

B B B

A AB

A

A
B

A

A

B

A

A

A

B

A

A

B

B
B
B
B

B

A A

Figure 6: The CPI as an upper bound to the space-time
K-Function[20]

Figure 7 shows bars in the city of Lincoln, NE. The
real crime dataset contains crime types (e.g. vandal-
ism, assaults and larceny) and other ancillary features
including bars and a football stadium.[8].

Figure 7: Bars in Lincoln, NE

4.1 Case Study and Statistical Insight: The aim
of our case study was to illustrate the discovery of real
CSTPs and their generators from real world datasets[8].
In the domain of public safety, events such as bar

(a) Crime Activity: All year(2007) (b) Crime Activity: Saturday nights(2007) (c) Crime Activity: Football nights(2007)

Figure 9: Distributions of number of crimes/hour around bar closing with different generators

closings and football games are considered generators of
crime[25]. We analyzed crime datasets from 2007 for the
city of Lincoln, Nebraska to identify real CSTPs. Our
analysis revealed that football games and bar closing
events do indeed generate CSTPs. Figure 8 shows
three such CSTPs from the Lincoln crime dataset.
We observed that bar closings on Saturday nights and

Increase(Larceny,Vandalism,Assaults)Football Game

Bar Closing (Saturday Night)Football Game

Increase(Larceny,Vandalism,Assaults)

Bar Closing (Saturday Night) Increase(Larceny,Vandalism,Assaults)

Figure 8: CSTPs from real dataset

bar closings after football games are crime generators.
Particularly, we observed that these events lead to
an increase in the activity of crimes such as larceny,
vandalism and assaults.

4.1.1 Statistical Insight: We consider whether
the CSTP generators identified are statistically signifi-
cant. Our analysis revealed that football games and bar
closings do indeed generate crime-related CSTPs. Foot-
ball games are normally held on Saturdays, and bars
in Lincoln close around 1 AM. We observed that bar
closings on these nights are associated with increased
crime activity such as larceny, vandalism and assaults.
Next we confirmed that the CSTPs and their genera-
tors were statistically meaningful using two statistical
insights. First, we compared the number of crimes per
hour around bar closing time for saturdays and football
game nights with crimes at bar closing for the entire
year. Figure 9, shows that the mean and median of the
crime activity is higher(by one standard deviation) on
saturdays and football nights compared to the year as
a whole.

For confirmation of the significance of the genera-
tors, we performed the Kolmogorov-Smirnov (KS) non-
parameteric test for equality of two statistical distribu-

tions [16]. We chose a non-parametric test because the
empirical distributions of the data display distinctive
non-Gaussian properties. The null hypothesis under the
KS test states that the candidate statistical distribu-
tions under comparison are a part of the same contin-
uous distribution. The rejection of the null hypothe-
sis implies that the two distributions are different, and
thus that Saturday night bar closing and home foot-
ball games are significant generators of CSTPs. Table 1
shows the results of the KS test comparing the candi-
date distributions(crime activity around bar closing on
all nights, on Saturday nights, and after football games).
As shown by Table 1, the KS test rejected the null hy-
pothesis (and inferred a significant difference between
distributions) when comparing Saturday nights with all
nights at a significance level of 0.05. In addition, us-
ing our CSTP thresold of 0.5 to compare post-football
nights and all nights also produces the CSTP (football
game → higher crime rate).

Figure 10 shows the empirical frequencies of the
three groups. The KS statistic in the fourth column
of Table 1 represents the maximum distance between
the data frequencies. Figure 10 and the KS results
strongly indicate that the saturday night barclosing and
the football game bar closing are from significantly dif-
ferent populations than all day bar closing. However,
these populations are not signficantly different from
each other even though they are entirely different event
types.

4.2 Performance Evaluation: We evaluated candi-
date design decisions for the CSTP miner by measuring
its performance with and without the proposed UB and
MST filtering strategies. Figure 11 shows the input pa-
rameters used in the experiments. We compared the ex-
ecution time of the CSTP Miner for four different design
decisions: no filtering, UB filtering alone, MST filtering
alone, UB and MST filter together. The specific exper-
imental analysis questions addressed were: a)the effect
of dataset size; b)the effect of the CPI threshold; c)the
effect of the number of event types; d)the effect of the
spatial neighborhood size; e)the effect of the temporal

Table 1: Significance of CSTP generators

Distribution I Distribution
II

KSTAT P-value Significance
(α = 0.05)

CSTP Threshold(α =
0.5)

Saturday night All year 0.4187 1.2498e− 07 Yes Yes
Football night All year 0.3400 0.1067 No Yes
Saturday night Football night 0.1987 0.7899 No No

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(
x
)

Empirical data Frequencies

All Year
Saturday Nights
Football Saturday Nights

Figure 10: Cumulative data frequency comparison be-
tween different populations

Crime

Dataset Size

CPI Threshold

Spatio−temporal AnalysisCSTP Miner

Candidate
Design Decisions

of Event Types

Spatial Neighborhood Size

Temporal Neighborhood
Size

Dataset

Grid parameters(d,t)

Real

Figure 11: Experimental Setup

neighborhood size; f) the effect of multi-resolution grid
paramter ’d’; and g)the effect of multi-resolution grid
parameter ’t’. The CSTP Miner was implemented in
Matlab Release 7. The experiments were performed on
a quad core Intel Xeon X5355 2.66 GHZ Linux Work-
station with 16GB of main memory.

The ST crime datasets consisted of the following
fields: id, location, time, crime type and other details
related to the crime. The datasets were preprocessed by
assigning time stamps to every crime incident. Crime
incidents that happened at exactly the same time were
awarded identical timestamps. Temporal neighborhood
thresholds were defined based on this assignment.
Effect of Data Size: Figure 12 shows the effect of

dataset size on execution time. The UB filter creates
a modest drop in execution time, while the MST filter
and both filters together drop computation time by an
order of magnitude.
Effect of Number of Event Types: The effect of

number of event types on the computational cost of the

 0

 100

 200

 300

 400

 500

 500 1000 1500 2000 2500 3000 3500 4000

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Dataset Size

No Filter
UB Filter

MST Filter
Both Filters

Figure 12: Effect of Dataset Size (Execution times of MST
and Both Filters range from 7.9170 sec to 20.2039 sec)

 0

 10000

 20000

 30000

 40000

 50000

 4 5 6

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Spatio-temporal Event types

No-Filters
UB Filter

MST Filter
Both Filters

 0

 10000

 20000

 30000

 40000

 50000

 4 5 6

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Spatio-temporal Event types

No-Filters
UB Filter

MST Filter
Both Filters

 0

 10000

 20000

 30000

 40000

 50000

 4 5 6

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Spatio-temporal Event types

No-Filters
UB Filter

MST Filter
Both Filters

 0

 10000

 20000

 30000

 40000

 50000

 4 5 6

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Spatio-temporal Event types

No-Filters
UB Filter

MST Filter
Both Filters

Figure 13: Effect of # event types(Execution times of
MST and Both Filters range from 6.3695 sec to 11512 sec)

CSTP Miner is exponential . As illustrated in Figure 13,
the execution time rises remarkably even with a small
increase in the number of event types. Nevertheless,
The results show a significant separation between ap-
proaches with and without MST filtering. In line with
the algebraic cost model, use of both filters produces
the fastest runtimes, followed closesly by MST filtering
alone. Upper bound filtering run times lag far behind
and are only slightly better than for no filtering at all.

Effect of CPI Threshold: The effect of the CPI
threshold on execution time can influence decisions to
identify appropriate interest measure thresholds for dif-
ferent performance requirements. Figure 14 shows the
effect of the CPI threshold on the execution time of the
CSTP Miner for various design decisions. It can be un-
derstood from Figure 14 that, as the value of the CPI
threshold increases, the execution time as well as the
separation between design decisions narrows. This oc-
curs because increases in the value of the interest mea-
sure leads to the pruning of most of the patterns. This
will not only reduce the execution time, but will also
reduce the gap between the candidate design decisions.

 0

 100

 200

 300

 400

 500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Cascade Participation Index Threshold

No-Filters
UB Filter

MST Filter
Both Filters

Figure 14: Effect of CPI Threshold(Execution times of
MST and Both Filters range from 4.0548 sec to 22.3895 sec)

Again the upper bound filter is much less effective than
the MST filter.
Effect of Spatial Neighborhood Size: A ST crime

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Spatial Neighborhood Size

No-Filters
UB Filter

MST Filter
Both Filters

Figure 15: Effect of Spatial Neighborhood
Size(Execution times of MST and Both Filters range
from 7.022 sec to 19.418 sec)

dataset of 4083 instances and 4 event types was used
and the spatial neighborhood size was varied from 1
mile to 7 miles keeping the interest measure threshold
at 0.2 and the time neighborhood at 1750 time stamps.
Figure 15 shows that execution time is fairly constant
regardless of neighborhood size. Again, MST and both
filters together do much better than no filter, while UB
does only modestly better.
Effect of Temporal Neighborhood Size: Although

 0

 100

 200

 300

 400

 500

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Temporal Neighborhood Size

No-Filters
UB Filter

MST Filter
Both Filters

Figure 16: Effect of Temporal Neighborhood Size (Exe-
cution times of MST and Both Filters range from 7.368 sec
to 20.188 sec)

spatial neighborhood size did not affect execution time
much, the same was not true for temporal neighbor-
hood size. Figure 16 shows that CSTP miner’s run
time was sensitive to increases in temporal neighbor-
hood size. Nevertheless, MST filtering showed superior
performance for all temporal neighborhood sizes, its run
time increasing linearly while the filterless run time in-
creased exponentially.
Grid parameters The MST filter is sensitive to the
resolution of the grid that is imposed on the original
dataset. Hence, we examined the effect of varying the
grid parameters on the design decisions associated with
the MST filter.
Effect of Grid parameter ’d’:Figure 17 shows the

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Grid Size Parameter ’d’

MST Filter
Both Filters

Figure 17: Sensitivity of MST filter design decisions to
variation in Grid parameter ’d’

sensitivity of design decisions associated with the MST
filter to the grid parameter ’d’. Using both the MST
filter and the UB filter resulted in better performance
using the MST filter alone. The multi-modal behavior
of the design decisions with respect to execution time
is primarily due to the fact that ST data distributions
are sensitive to scale. Sensitivity of the MST filter with
respect to grid size parameter ’d’ was determined by
keeping the grid size parameter ’t’ constant at a value
of 2000.
Effect of Grid parameter ’t’:Figure 18 shows the

 0

 5

 10

 15

 20

 25

 30

 800 1000 1200 1400 1600 1800 2000 2200 2400

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Grid Size parameter ’t’

MST Filter
Both Filters

 0

 5

 10

 15

 20

 25

 30

 800 1000 1200 1400 1600 1800 2000 2200 2400

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Grid Size parameter ’t’

MST Filter
Both Filters

 0

 5

 10

 15

 20

 25

 30

 800 1000 1200 1400 1600 1800 2000 2200 2400

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Grid Size parameter ’t’

MST Filter
Both Filters

 0

 5

 10

 15

 20

 25

 30

 800 1000 1200 1400 1600 1800 2000 2200 2400

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Grid Size parameter ’t’

MST Filter
Both Filters

 0

 5

 10

 15

 20

 25

 30

 800 1000 1200 1400 1600 1800 2000 2200 2400

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Grid Size parameter ’t’

MST Filter
Both Filters

Figure 18: Sensitivity of MST filter design decisions to
variation in Grid parameter ’t’

sensitivity of the design decisions associated with the
MST filter to the grid parameter ’t’. Use of the MST
and the UB filters together was less sensitive to the vari-
ation of the grid parameter ’t’ because of the combined
pruning effect produced by both filters. However, the
MST filter alone was sensitive to the variation in param-
eter ’t’. The increases in execution time reflect the work
done by the filter while computing the interest measure
in the coarse dataset. Sensitivity of the MST filter with
respect to the grid size parameter ’t’ was determined by
keeping the grid size parameter ’d’ constant at a value
of 7.

5 Discussion

The Cascade participation index (CPI) is a lower
bound on the conditional probability of a CSTP given
one of its participating event types. Other alternatives
to quantify interestingness have been explored in the
broader data mining literature[14, 15, 19, 24].

For example, transaction based frequent pattern dis-
covery methods for extracting sequences and graphs
seek to identify a set of frequent patterns given a set
of transactions from market-basket data or other graph
structure transactions such as chemical compounds[14,
24]. These methods use support(probability of occur-
rence) to denote the interestingness of a pattern. How-
ever, ST frameworks are continuous. Transactioniza-
tion/partitioning of a continuous framework misses re-
lationships between event instances at the boundary
of these transactions/partitions. Transactionizing via
non-disjoint partitioning may lead to double counting
of overlapping relationships.

Large sparse graph mining seeks to identify frequent
sub-graph patterns from a large sparse graph using com-
putationally expensive measures such as the Maximum
Independent set (MIS)[15]. The problem of computing
an MIS is NP-complete[12, 15].In addition, a statisti-
cal/probabilistic interpretation of MIS has not been ex-
plored. A special case of large sparse graph mining is
Workflow process mining that deals with finding a min-
imal directed acyclic graph of a given process and a log
containing many independent executions of this process
[2]. It is not suitable for CSTP mining due to potential
overlap among CSTP instances and presence of multiple
cascade-types in a dataset.

Models such as Bayesian networks have been used
to represent a joint probability distribution of a set of
variables[19]. The evaluation of joint probabilities for
a single network that is computed from a database of
attributes can be represented as a vector of condition-
als. However, the size of this vector is exponential in
the maximum in-degree of a node in a bayesian net-
work making the join probability computation expen-

sive. Also, joint probability is similar to the support
measure used in transaction graph mining as it mea-
sures the probablility of a group of variables occurring
together. Hence, an interestingness measure based on
joint probability also may not be natural for a contin-
uous ST framework. Table 2 provides a comparative
summary of the computational cost and the statistical
and probablistic interpretation of candidate frameworks
and their interestingness measures.

6 Conclusions and Future Work

This paper modeled cascading ST patterns (CSTPs)
as ST partial ordered patterns. The paper proposed a
novel interest measure, a correct and complete CSTP
miner and filtering strategies that were observed to en-
hance computational performance. The proposed mea-
sures and CSTP Miner were also proved to discover sta-
tistically meaningful CSTPs from ST datasets.

Our case study discovered a CSTP from a real data
set. From our experiments, it is clear that the MST
filter shows great promise in improving computational
efficiency. While the UB filter did not do well in this set
of experiments, we feel that it may do better in future
experiments using other datasets. A detailed discussion
is available in the appendix.

In future work, we would like to enhance the com-
putational scalability of the CSTP Miner by : (a) ex-
amining different ST join strategies and (b)exploring
different ST data structures for performing ST joins effi-
ciently. We also plan to perform a rigorous experimental
analysis and evaluation of parameters using synthetic
datasets and evaluate alternatives to the CPI. We hope
to explore several alternatives for designing new interest
measures that for account aspects such as scale and ST
semantics (e.g., time intervals [11, 4]). Based on ST pat-
terns from applications such as spatial epidemiology [7],
spatial economics [10] and chemical morphognesis [26],
we plan to explore guidelines to identify neighborhood
sizes and compare patterns with those generated by us-
ing Bayesian networks.

7 Acknowledgments

We would like to thank Kim Koffolt and the members of
the spatial database and data mining research group at
the University of Minnesota for their helpful comments.
We are especially grateful to Mr. Tom Casady, Chief
of Police, Lincoln City Police Department, Lincoln,
Nebraska for providing us with real ST crime datasets.
This work was supported in part by the US Army and
NSF.

References

Table 2: Comparative summary of Interestingness measures

Name CPI MIS[15]
Framework CSTP Graph Mining
Computation cost per
candidate network

O(n2) O(1.21n)

Statistical/Probablistic
Interpretation

upper-bound(space-time-K-
Function[20]) and lower-bound
(Pr(Network|Event − type))

Not Explored

[1] Committee on Strategic Advice on the U.S. Climate

Change Science Program; National Research Coun-

cil: Restructuring Federal Climate Research to Meet

the Challenges of Climate Change. The National
Academies Press, Washington D.C., 2009.

[2] R. Agrawal, D. Gunopulos, and F. Leymann. Mining
process models from workflow logs. In In Sixth Interna-

tional Conference on Extending Database Technology,
pages 469–483, 1998.

[3] R. Agrawal, T. Imielinski, and A. N. Swami. Min-
ing association rules between sets of items in large
databases. In SIGMOD Conference, pages 207–216,
1993.

[4] J. F. Allen. Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832–
843, 1983.

[5] J. F. Allen. Towards a general theory of action and
time. Artif. Intell., 23(2):123–154, 1984.

[6] M. Celik, S. Shekhar, J. P. Rogers, and J. A.
Shine. Mixed-drove spatiotemporal co-occurrence pat-
tern mining. IEEE Transactions on Knowledge and

Data Engineering, 20(10):1322–1335, 2008.
[7] A. Cliff, P. Haggett, J. K.Ord, and G. Versey. Spatial

Diffusion: An Historical Geography of Epidemics in

an Island Community. Cambridge University Press,
Cambridge, 1981.

[8] L. C. P. Department. Lincoln city crime records.
http://www.lincoln.ne.gov/city/police/, 2008.

[9] E.Gabriel and P.J.Diggle. Second-order analysis of
inhomogeneous spatio-temporal point process data.
Statistica Neerlandica, 63(1):43–51, January 2009.

[10] M. Fujita, P. Krugman, and A. Venables. The spatial

economy: cities, regions and international trade. The
MIT press, 2001.

[11] A. Galton. Towards a qualitative theory of movement.
In Int. Conf. on Spatial Information Theory, LNCS

988, pages 377–396. Springer, 1995.
[12] M. R. Garey and D. S.Johnson. Computers and In-

tractability: A guide to the theory of NP-Completeness.
W.H. Freeman and Company, New York, USA, 1979.

[13] Y. Huang, L. Zhang, and P. Zhang. A framework for
mining sequential patterns from spatio-temporal event
data sets. IEEE Transactions on Knowledge and Data

Engineering, 20(4):433–448, 2008.
[14] M. Kuramochi and G. Karypis. An efficient algorithm

for discovering frequent subgraphs. IEEE Transactions

on Knowledge and Data Engineering, 16(9):1038–1051,
Sept. 2004.

[15] M. Kuramochi and G. Karypis. Finding frequent
patterns in a large sparse graph. Data Mining and

Knowledge Discovery, 11(3):243–271, 2005.
[16] F. Massey Jr. The Kolmogorov-Smirnov test for

goodness of fit. Journal of the American Statistical

Association, pages 68–78, 1951.
[17] P. Mohan, S. Shekhar, J. A. Shine, and J. P. Rogers.

Cascading spatio-temporal pattern discovery: A sum-
mary of results. Technical report, Department of
Computer Science and Engineering, University of Min-
nesota, 2010.

[18] D. M. Morens, G. K. Folkers, and A. S. Fauci. The
challenge of emerging and re-emerging infectious dis-
eases. Nature, 430:242–249, July 2004.

[19] J. Pearl and G. Shafer. Probabilistic reasoning in

intelligent systems: networks of plausible inference.
JSTOR, 1988.

[20] P.J.Diggle, A. G. Chetwynd, R. Haggkvist, and S. Mor-
ris. Second-order analysis of space-time clustering.
Statistical Methods in Medical Research, 4:124–136,
1995.

[21] R. Robinson. Counting labeled acyclic digraphs. New

directions in the theory of graphs, pages 239–273, 1973.
[22] S. Shekhar and Y. Huang. Discovering spatial co-

location patterns: A summary of results. In Lecture

Notes in Computer Science, pages 236–256, 2001.
[23] S. Shekhar and H. Xiong, editors. Encyclopedia of GIS.

Springer, 2008.
[24] R. Srikant, R. Srikant, R. Agrawal, and R. Agrawal.

Mining sequential patterns: Generalizations and per-
formance improvements. pages 3–17, 1996.

[25] M. S.Scott and K. Dedel. Assaults in and around
bars(2nd edition). Problem Oriented Guides for Police,

Problem Specific Guides, 1:1–78, 2006.
[26] A. M. Turing. Turing. The chemical basis of morpho-

genesis. Philosophical Transactions of the Royal Soci-

ety of London Series B, 237:37–72, 1952.
[27] J. Wang, W. Hsu, and M. L. Lee. A framework for min-

ing topological patterns in spatio-temporal databases.
In CIKM ’05: Proceedings of the 14th ACM interna-

tional conference on Information and knowledge man-

agement, pages 429–436, New York, NY, USA, 2005.
ACM.

[28] M. F. Worboys. Event-oriented approaches to geo-
graphic phenomena. International Journal of Geo-

graphical Information Science, 19(1):1–28, 2005.

Appendix
Disclaimer: This section is mainly for the convenience

of the reviewers. These will be expanded from camera

ready and made available as a technical report

A Theorems and Proofs

A.1 Anti-monotonicity of CPI and its upper
bound

Lemma A.1. CPI is Anti-monotonic.

Proof: Let {e} = (u, v) ∈ CSTP (k) and e /∈ CSTP (k − 1).
Here, u and v represent event types that are either ∈ CSTP (k)
or ∈ CSTP (k − 1) By Definition 2.2, we have,

CPI(CSTP (k)) = min

CPI(CSTP (k − 1)),
#instances(u)

#instances(u) in Dataset
,

#instances(v)
#instances(v) in Dataset

⇒ CPI(CSTP (k)) ≤ CPI(CSTP (k − 1))
CPI is Anti-Monotonic.

Lemma A.2. upper(CPI) is Anti-Monotonic.

Proof: Let {e} = (u, v) ∈ CSTP (k) and e /∈ CSTP (k − 1).
Here, u and v represent event types that are either ∈ CSTP (k)
or ∈ CSTP (k − 1) By Definition 3.1, we have,

upper(CPI(CSTP (k))) =

=

min

upper(CPI(CSTP (k − 1))),
#instances(u)

#instances(u) in Dataset
,

#instances(v)
#instances(v) in Dataset

max

upper(CPI(CSTP (k − 1))),
#instances(u)

#instances(u) in Dataset
,

#instances(v)
#instances(v) in Dataset

⇒ upper(CPI(CSTP (k))) ≤ upper(CPI(CSTP (k − 1)))

Theorem A.1. The CSTP miner finds statistically meaning-

ful ST patterns

Proof. Lemma 3.2, showed that the CPI can find patterns that are
found by the space-time K-Function. Hence, any ST correlation
that exists between a pair of event types in the data is identified by
the CPI. Further, the space-time K-Function cannot be extended
for more than two event types and it is not anti-monotone. The
CPI guarantees computational efficiency while finding statistically
meaningful patterns, while the space-time K-Function does not.

B Algebraic Cost Model

The goal of the algebraic cost model is to analytically
compare the computational costs of candidate design decisions
for the kth iteration of the CSTP Miner. We evaluate four design
decisions : (a) no filtering prior to the actual pruning phase;
(b) upper bound filtering before candidate generation; (c) MST
filtering after candidate generation; and (d) use of a combination
of both filtering strategies. The key insight of the algebraic cost
model is to analytically show that the MST filter and the UB
filter enhance computational savings. Notation for the algebraic
cost model is listed in Table 3. The computational costs of
candidate design decisions are : CNF (k), CUBF (k), CMST (k)
and CBF . The cost of the kth iteration of the CSTP Miner
without using any filter is given by Equation (B.1).

(B.1) CNF (k) = C(CSTPk) + CPrune(CSTPk+1, data)
The cost of the kth iteration of the CSTP Miner using only the
upper bound filtering is given by Equation (B.2).

(B.2)

CUBF (k) = Cupper(CSTPk) + CPrune(CSTP
′

k+1, data)
The cost of the kth iteration of the CSTP Miner while using only
the MST filtering is given by Equation (B.3).

(B.3)

CMST (k) = C(CSTPk)

+ CPrune(CSTPk+1, Grid − data)

+ CPrune(CSTP
′

k+1, data)
The cost of the kth iteration of the CSTP Miner while using

both the filters is given by Equation (B.4).

(B.4)

CBF (k) = Cupper(CSTPk)

+ CPrune(CSTP
′

k+1, Grid − data)

+ CPrune(CSTP
′′

k+1, data)
UB filtering is applied before candidate generation. Hence,

the computational cost of calculating the upper bound for a
candidate pattern is linear in the size of the pattern. Even though
we incur this cost during upper bound filtering, the upper bound
filter would be effective in preventing the merging of large numbers
of size k patterns to generate non-prevalent size k+1 patterns.
However, the filtering ability still depends on how tight the upper
bound value is with respect to the actual measure value. Hence
the cost of candidate generation using the upper bound filter
would be as high as the candidate generation without the upper
bound filter. For the sake of simplicity we choose to ignore the
effect of traversing the pattern in the cost model. Based on this,
we obtain Equation (B.5),
(B.5) Cupper(CSTPk) ≤ C(CSTPk)

From the definition of CSTPk+1, CSTP
′

k+1 and

CSTP
′′

k+1, we have:

(B.6) |CSTPk+1| ≥ |CSTP
′

k+1| ≥ |CSTP
′′

k+1|
Based on Equations (B.1), (B.2), (B.3), (B.4), (B.5) and (B.6),
ratios between the costs of candidate design decisions are as
follows:
Comparison between UB filter and no filters: The ratio of
the computational cost using the UB filter (numerator) and using
no filters is:
(B.7)

CUBF (k)

CNF (k)
=

Cupper(CSTPk) + CPrune(CSTP
′

k+1, data)

C(CSTPk) + CPrune(CSTPk+1, data)

≤ 1
The value of the ratio represented by Equation (B.7) is

≤ 1 because of Equation B.5. Since the pruning step has to

deal with lesser candidates, the value of CPrune(CSTP
′

k+1, data)
≤ CPrune(CSTPk+1, data). Hence, analytically the CSTP Miner
performs better with the UB filter than without any filters.
However, in the worst case the two costs would be equal according
to Equation (B.7).
Comparison between MST filter and no filters: The ratio
of the computational costs using the MST filter and using no
filters is given as:

(B.8)

CMST (k)

CNF (k)
=

C(CSTPk)

+ CPrune(CSTPk+1, Grid − data)

+ CPrune(CSTP
′

k+1, data)

C(CSTPk) + CPrune(CSTPk+1, data)

≤ 1

Table 3: Notation for Algebraic cost model

Notation Meaning
CMST (k) Cost while using MST Filtering.

CNF (k) Cost when no filtering strategy is used.

CUBF (k) Cost when only the UB filtering strategy is used

CBF Cost while using both filtering strategies

C(CSTPk) Cost of Candidate Generation.

CPrune(CSTPk+1, Grid −

data)
Cost of pruning the size k+1 candidate set during MST filtering
using the coarse dataset.

CPrune(CSTP
′

k+1, data) Cost of pruning a reduced subset of the size k+1 candidate set
using the actual dataset.

CPrune(CSTPk+1, data) Cost of pruning the size k+1 candidate set using the actual
dataset.

CPrune(CSTP
′′

k+1, data) Cost of pruning a reduced subset of a subset of the size k+1
candidate set using the actual dataset.

CPrune(CSTP
′

k+1, Grid −

data)
Cost of pruning a reduced subset of the size k+1 candidate set
using the coarse dataset.

Cupper(CSTPk) Cost of candidate generation during upper bound filtering.

CMST (k) and CNF (k) have identical candidate generation
costs, C(CSTPk). Hence the effect of this can be ig-
nored. The dominant costs are CPrune(CSTPk+1, Grid − data),

CPrune(CSTP
′

k+1, data) and
CPrune(CSTPk+1, data). If the ST data distribution is higly
skewed, then the number of non-empty grids would be lower and

the size of the grid-data would be much lower compared to the
original dataset. Hence, in CMST (k), CPrune(CSTP

′

k+1, data)
would dominate over the cost of computing the coarse interest
measure for a CSTP. According to Equation B.6, the MST filter-
ing strategy filters a large number of candidates. For this reason,
we have:
(B.9) CPrune(CSTP

′

k+1, data) ≤ CPrune(CSTPk+1, data)
This means that CMST (k) ≤ CNF (k) which verifies Equa-
tion B.8.
Comparison between using both filters and no filters:

The ratio of the cost of CSTP Miner using both filters and no
filters is given as:

(B.10)

CBF (k)

CNF (k)
=

Cupper(CSTPk)

+ CPrune(CSTP
′

k+1, Grid − data)

+ CPrune(CSTP
′′

k+1, data)

C(CSTPk) + CPrune(CSTPk+1, data)

≤ 1
In Equation (B.10), the dominant cost is due to pruning on the
original dataset. Thus using both filters with CSTP Miner reduces
the size of the candidate set two times, once during candidate
generation through use of the UB filter, and the second time
during MST filtering. The use of two filters represents a more
efficient design than using no filters. Thus, we have:
(B.11) CPrune(CSTP

′′

k+1, data) ≤ CPrune(CSTPk+1, data),
verifying Equation (B.10).
Comparison between the MST filter and UB filter: The
ratio of the computational cost using only the MST filter and

using only the UB filter is:

(B.12)

CMST (k)

CUBF (k)
=

C(CSTPk)

+ CPrune(CSTPk+1, Grid − data)

+ CPrune(CSTP
′

k+1, data)

Cupper(CSTPk) + CPrune(CSTP
′

k+1, data)

≤ 1(Case(A)) or

≥ 1(Case(B))
Case (A) of Equation (B.12) happens when the data is sparse

and mostly has skewed distribution; in this case the UB filter
would perform at its worst according to Equation (B.7). Case
(A) particularly occurs under conditions when Equations (B.9),
(B.11) and (B.6) are true. Case (B) of Equation B.12 happens
when the MST filter performs its worst, particularly in cases
where the dataset is dense and more or less uniformly distributed.
This will increase the number of non-empty grid cells and would
end up increasing the size of the grid-data, leading to an increase
in the cost, CMST (k). Finally, when we make use of both
filters together, the CSTP Miner has enhanced pruning ability.
Even if one of the filters is not effective, the other would be.
Hence, the strategy of using both filters together would result in
CBF (k) ≤ CMST (k) and CBF ≤ CUBF (k).

C Discussions

Comparison between CSTP Discovery and Graph

Mining :Graph Mining from single large graphs[15] defines
efficient algorithms for discovering frequent patterns form large
sparse graphs. Graph mining makes use of a measure called
the Maximum Independent Set (MIS), which is defined as the
number of edge-disjoint embeddings. Figure 19, illustrates a
subset of the ST instance neighborhood graph to discover a
size three pattern. However, using MIS as a measure has the
following limitations:

a. MIS computation is NP-Complete[12]. Hence, an exact
discovery of patterns is computationally exhorbitant even for
smaller sized datasets.
b. MIS computation disallows edge overlapped embeddings.

C.2

A.1

B.1

B.1

A.1

A.4

C.1

B.1
D.1

C.2

2. Choice 2 = {Embedding2}. MIS = 1

1. Choice 1 = {Embedding1,Embedding3}. MIS = 2

Embedding3

Embedding2

Embedding1

Maximum Independent Set Choices

Overlapped Embedding Graph

Candidate Pattern

Data Graph

D.2
B

C

A

A.4

C.1

C.2

A.4

B.1

Figure 19: Comparison of CSTP Discovery with Large
Sparse Graph Mining

Figure 19 shows three edge overlapped embeddings of the target
pattern to be examined, namely, Embedding 1, Embedding 2,
Embedding 3. Graph Mining initially constructs the overlapped
embedding graph and then identifies the MIS from that graph
for a target pattern. To determine the MIS, an approximate
greedy heuristic is used to identify as many patterns as possible
above a given threshold. For example, if the threshold was set
to 1, the MIS based approach may return any one of the two
choices shown in Figure 19 and is not always guaranteed to
return Choice 1, which is the actual value. Hence this limits the
well definedness of the MIS based approach.
c. A third issue with large sparse graph mining is that it
cannot take advantage of the low-dimensional embedding of
ST framework to design efficient filtering strategies (e.g. MST
Filter).
The computational complexity of the fastest exact solution to the
MIS is , O(1.21N), where N is the number of vertices in the data
graph, whereas, the computational complexity of ST join is at
most O(N2), where N is the number of vertices in the ST instance
neighborhood graph. This implies that the computational cost
of computing CSTP measures is still lesser than MIS computation.

A Tighter CPI From, the experimental analysis
results, it is quite clear that the upper bound filter is not very
effective in enhancing computational efficiency. This is primarily
because the upper bound for the CPI is a loose upper bound
and the possible presence of noisy features that generated a large
number of non-prevalent patterns. For example, Figure 20(b)
shows the interaction between a single instance of event type
A surrounded by many instances of event type B. It could be
possible that A is a noise feature which is not accounted for by
the CPI and its upper bound. Hence, the upper bound filter is

not very effective. A detailed evaluation of the effect of noise
using synthetic datasets is beyond the scope of the current
paper. Based on our experiments and analysis, we propose a new
measure called the Tight Cascade Participation Index(TCPI).

Definition C.1. Tight Cascade Participation Index (TCPI)

: The tight cascade participation index can be formally defined

as,

TCPI = min
{

#instances (Mj)

max{#instances (Mi) in Dataset}

}

Where, Mj, is an event type ∈ CSTP , with 1 ≤ j ≤
Event Types in Dataset.
For example, the TCPI of the CSTP shown in Figure 2

and the neighborhood graph shown in Figure 3 is TCPI =
min

{

1
4
, 2

4
, 2
4
, 2
4

}

= 0.25.

The TCPI is a tighter version of the CPI and lowest possible value
that the CPI of a candidate CSTP can take. The rationale behind
defining such a tight measure is to prune out infrequently occuring
event types that may have complete participation with frequently
occurring event-types. For example, Figure 20(d) shows a dataset
where a single instannce of event type A is surrounded by many
instances of event type B. The TCPI takes a value of 1

5
, whereas

the CPI takes a value of 1.
The TCPI can also be used by the CSTP Miner as it

B
B A

A

B

A(a)

CPI 2/3

1/3

1

1/5

(b)

TCPI

B

A

B
A

B

A

A

B

B

B

B

B

Figure 20: Illustration of Tight CPI

also possesses the same computational properties as that of the
CPI(e.g. anti-monotonicity, anti-monotone upper bound etc.)
Similar to the upper bound of the CPI, the TCPI also has an
upper bound which is defined as follows:

Definition C.2. Upper bound(TCPI) : is formally defined as

upper(TCPI) =
min{#instances(Mj}
max{#instances(Mi)}

Where, Mj , Mi, are event types ∈ CSTP , with 1 ≤ j, i ≤
Event Types in Dataset and i 6= j.
However, max {#instances(Mi)}
≤ max {#instances(Mi)} in Dataset

⇒ upper(TCPI) ≥
min{#instances(Mj)}

max{#instances(Mi)} in Dataset

⇒ upper(TCPI) ≥ min
{

#instances(Mj)

max{#instances(Mi)} in Dataset

}

⇒ upper(TCPI) ≥ RCPI

In addition, the TCPI is an anti-monotonic interest measure
which could be used by the CSTP Miner. Lemma C.1 proves
that the TCPI and its upper bound are anti-monotonic.

Lemma C.1. TCPI is anti-monotonic.

Proof: By Definition C.1, we can define, MaxInstance =

max

#instances(Mj) in Dataset,
#instances(u) in Dataset,
#instances(v) in Dataset

where, Mj represents event type ∈ CSTP (k) and ∈
CSTP (k − 1), with 1 ≤ j ≤ # Event Types in Dataset.
u represents event type ∈ CSTP (k) or ∈ CSTP (k − 1)
v represents event type ∈ CSTP (k) or ∈ CSTP (k − 1)
and {e} = (u, v) ∈ CSTP (k) and e /∈ CSTP (k − 1).
TCPI(CSTP (k)) =

min

#instances(Mj)

MaxInstance
,

#instances(u)
MaxInstance

,
#instances(v)
MaxInstance

However,
#instances(Mj)

MaxInstance
≤ TCPI(CSTP (k − 1))

Also, TCPI(CSTP (k)) ≤
#instances(Mj)

MaxInstance

⇒ TCPI(CSTP (k)) ≤ TCPI(CSTP (k − 1))
TCPI is anti-Monotonic.

